• author
    • Kathy Keatley Garvey

    • January 20, 2015 in Columnists

    ‘Super mosquito’ resistant to insecticide discovered


    Winters resident Gregory Lanzaro has been doing research on mosquitoes for 36 years, focusing on Mali since 1991. He is a medical entomologist at UC Davis. Photo by Kathy Keatley Garvey

    Interbreeding of two malaria mosquito species in the West African country of Mali has resulted in “a super mosquito” hybrid that’s resistant to insecticide-treated bed nets, researchers at UC Davis have discovered.

    “It’s ‘super’ with respect to its ability to survive exposure to the insecticides on treated bed nets,” said UC Davis medical entomologist Gregory Lanzaro of Winters, California, who led the research team.

    The research, published in “The Proceedings of the National Academy of Sciences, “provides convincing evidence indicating that a man-made change in the environment — the introduction of insecticides — has altered the evolutionary relationship between two species, in this case a breakdown in the reproductive isolation that separates them,” said Lanzaro, director of the Vector Genetics Laboratory and professor in the Department of Pathology, Microbiology and Immunology in the School of Veterinary Medicine.

    “What we provide in this new paper is an example of one unusual mechanism that has promoted the rapid evolution of insecticide resistance in one of the major malaria mosquito species.”

    Anopheles gambiae, a major malaria vector, is interbreeding with isolated pockets of another malaria mosquito, A coluzzii. Entomologists initially considered them as the “M and S forms” of Anopheles gambiae. They are now recognized as separate species.

    The insecticide resistance came as no surprise.

    “Growing resistance has been observed for some time,” Lanzaro said. “Recently it has reached a level at some localities in Africa where it is resulting in the failure of the nets to provide meaningful control, and it is my opinion that this will increase.”

    Lanzaro, who has researched mosquitoes for 36 years, and in Mali since 1991, credits insecticide-treated nets with “saving many thousands, probably tens of thousands of lives in Mali.” The World Health Organization’s World Malaria Report indicates that deaths from malaria worldwide have decreased by 47 percent since 2000. Much of that is attributed to the insecticide-treated bed nets.

    However, it was just a matter of time for insecticide resistance to emerge, medical entomologists and epidemiologist agree. Now there’s “an urgent need to develop new and effective malaria vector control strategies,” Lanzaro said. A number of new strategies are in development, including new insecticides, biological agents — including mosquito killing bacteria and fungi — and genetic manipulation of mosquitoes aimed at either killing them or altering their ability to transmit the malaria parasite. These efforts need to be stepped up.”

    The paper is titled “Adaptive Introgression in an African Malaria Mosquito Coincident with the Increase Usage of Insecticide-Treated Bed Nets.” First author is Laura Norris, then a postdoctoral scholar in the UC Davis Department of Entomology and Nematology who was supported by a National Institutes of Health T32 training grant awarded to Lanzaro. Norris has since accepted a position with the President’s Malaria Initiative in Washington, D.C.

    In addition to Lanzaro, co-authors include medical entomologist Anthony Cornel, Department of Entomology and Nematology and Vector Genetics Lab; Yoosook Lee and Travis Collier of the Vector Genetics Lab and the Department of Pathology, Microbiology and Immunology; and Abdrahamane Fofana of the Malaria Research and Training Center at the University of Bamako, Mali. Three grants from the National Institutes of Health funded the research.

    Lanzaro has researched mosquitoes in Mali for 24 years with “blood brother” Anthony Cornel, associate professor in the UC Davis Department of Entomology and Nematology who is headquartered at the UC Kearney Agriculture and Research Center, Parlier. Both are graduate student advisors in the department, training medical entomologists of tomorrow.

  • Leave a Comment